Сложность приемов умножения на счетах, как указы­валось, возрастает с увеличением числа цифр множителя, однако умножением на четырехзначное число не исчер­пываются возможности дальнейшего использования опи­санных выше приемов при вычислениях с многозначными множителями. Применение уже изученных нами приемов умножения в тех случаях, когда возникает необходимость умножать на пятизначные числа, очень часто оказы­вается практически вполне целесообразным. Задача сво­дится к тому, чтобы привести пятизначный множитель к виду, удобному для умножения, путем замены данного множителя равнозначным ему произведением более про­стых чисел, использования округленных множителей, близких к данному, и других знакомых нам приемов.

Подробнее...

При умножении на многозначное число часто бывает целесообразно использовать способ, применяемый при умножении на бумаге. При этом способе множимое на счетах не откладывается, оно должно быть записано на бумаге (как и множитель) и находиться в поле зрения считающего.

Подробнее...

Можно применять два способа поверки умножения.
Один из них состоит в том, что данные сомножители меняются местами, т. е. множимое превращается во множитель, а множитель употребляется в качестве множимого. От такой перестановки сомножителей произведение, как известно, не меняется. Тождество результатов умножения при том и другом порядке сомножителей по-зволяет допустить правильность произведенного действия.

Подробнее...

Деление представляет собой действие, обратное умно­жению. Деля одно число (делимое) на другое (делитель), мы ищем такое третье число (частное), на которое надо умножить делитель, чтобы получить делимое.

Подробнее...

Деление целых чисел на 10, 100, 1000 и т. п., вообще на числа, изображаемые единицей с одним или несколь­кими нулями, производится чрезвычайно просто: чтобы разделить число на 10, достаточно отделить в нем запя­той справа одну цифру; при делении на 100 отделить запятой две цифры и т. д.

Подробнее...

Необходимо прежде всего научиться быстро делить любые числа пополам. Для этого можно применять два способа.
При делении первым способом могут представиться два случая: первый — когда все цифры делимого четные, второй — когда среди цифр делимого имеются нечетные.

Подробнее...

При делении любых чисел одного на другое в общем случае применяется метод деления посредством вычита­ния. При делении на счетах откладывают делимое и за­тем сбрасывают с него (вычитают) делитель, начиная с единиц высших разрядов, столько раз, сколько это воз­можно. Если делитель содержится в делимом целое чис­ло раз, то последний остаток будет равен нулю; ecjirfостаток больше нуля, но меньше делителя, то деление нацело невозможно. В этом случае, в зависимости от условий задачи, деление может быть продолжено для получения дробных значений частного (об этом будет оказано дальше).

Подробнее...

Деление на многозначное число производится тем же способом, что и на однозначное число. Для получения первой цифры частного в высших разрядах делимого отделяется столько цифр, сколько их содержится в дели­теле. Если полученное при этом число превышает дели­тель, то производится деление путем вычитания; если же оно окажется меньше делителя, то присоединяют следую­щий знак и после этого приступают к делению.

Подробнее...

До сих пор для большей ясности мы пользовались такими числовыми примерами, в которых деление выпол­нялось нацело, без остатка. На практике, однако, в боль­шинстве случаев приходится иметь дело с числами, даю­щими . при делении одного на другое дробные частные. Эти частные могут быть выражены как конечными, так и бесконечными десятичными дробями.

Подробнее...

При делении чисел нередки случаи, когда частное не­возможно выразить конечной десятичной дробью, сколь­ко бы раз мы ни дробили остатки. Пусть требуется раз­делить 44 на 14.

Подробнее...
|
Template Settings
Select color sample for all parameters
Red Green Blue Gray
Background Color
Text Color
Google Font
Body Font-size
Body Font-family
Scroll to top