Вычитание десятичных дробей на счетах производит­ся подобно вычитанию целых чисел. Отложив на счетах уменьшаемое, сбрасывают единицы каждого разряда вычитаемого (начиная с высших разрядов), отнимая их от единиц одноименных разрядов уменьшаемого. При этом надо обращать внимание на то, где должна стоять запятая в итоге, особенно если хотя бы одно из чисел имеет более трех десятичных знаков после запятой.

Подробнее...

Как показывает практика, ошибки при подсчетах, даже при самой тщательной работе, неизбежны. Слу­чается, что на поиски ошибки тратится не меньше (а иногда и больше) времени, чем на самый подсчет. Говорят, легче избежать ошибки, чем ее обнаружить и исправить. Поэтому, как бы мы ни были уверены в своей работе, контроль подсчетов и вычислений в большинстве случаев следует признать весьма желательным, а то и необходимым.

Подробнее...

Из всех арифметических действий умножение в по­вседневной счетной (практике имеет, пожалуй, самое ши­рокое применение. Изучение рациональных приемов умно­жения на счетах исключительно важно, так как путем использования этих приемов не только достигается зна­чительная экономия времени сравнительно с вычисления­ми на бумаге, но и уменьшается возможность ошибок.

Подробнее...

Простейший случай умножения на счетах есть умножение на однозначное число. Поскольку умножение есть действие, при помощи которого находится сумма нескольких одинаковых слагаемых, то задачу умножения на однозначный множитель можно свести к сложению, т. е. повторить данное множимое слагаемым столько раз, сколько единиц во множителе. Таким способом умноже­ния многие счетные работники при умножении на одно­значные числа пользуются и теперь. Однако при производстве действий с большими числами, начиная пример­но с четырехзначных, способ сложения оказывается слишком громоздким. Гораздо проще и быстрее можно прийти к тому же результату пользуясь таблицей умно­жения.

Подробнее...

Основательная и достаточно продолжительная тре­нировка дает возможность упростить технику умноже­ния. При этом, в зависимости от навыка, надобность в промежуточном приеме, т. е. в сдвигании вправо умно­жаемой цифры множимого отпадает, что значительно упрощает и ускоряет процесс умножения. Убедиться в этом легко на следующем примере:

Пример 1. Умножить 214 на 6.

Откладываем на счетах множимое и приступаем к умножению: не сбрасывая числа сотен, умножаем его в уме на данный множитель и получаем в произведении 12 сотен. Замечаем, что вторая цифра этого числа (2) уже стоит на счетах, значит, надо отложить только пер­вую его цифру — единицу четвертого разряда. Сделав это, получим число 1214.

Подробнее...

В некоторых учебных пособиях по счетоводству и хозяйственным вычислениям описываются другие способы умножения на счетах на однозначный множитель. Не лишне ознакомиться с ними и провести параллель между этими способами и теми, которые описаны тут.
Приемы умножения, рекомендуемые упомянутыми учебными пособиями, сводятся к следующему:
1. Чтобы умножить какое-либо число на 2, надо повторить его слагаемым два раза; например, 214 X 2.
214 + 214 = 428.

Подробнее...

Самый простой случай умножения на двузначный множитель — это умножение на двузначное число, окан¬чивающееся нулем, т. е. на 10, 20, 30, 40 и т. п. Каждый из этих множителей представляет собой произведение числа 10 на какое-либо однозначное число (1, 2, 3,4... 9). Например, множитель 40 можно представить в виде про-изведения 10X4, множитель 70 — в виде 10X7.

Подробнее...

При умножении любого числа на двузначные мно­жители, кроме случая множителей, кратных 10, описан­ного в предыдущем параграфе, могут представиться два случая: 1) когда множитель — составное число, т. е. разлагается на два однозначных сомножителя, напри­мер, 12 (3X4), 14 (2X7), 25 (5 X 5) и т. п.; 2) когда множитель, будучи двузначным числом, в то же время является простым числом, не разложимым на однознач­ные множители, например, 17, 29, 47. Таких чисел в по­следовательном ряду чисел первой сотни насчитывается всего 21. О них будет речь в последующих параграфах, здесь же мы рассмотрим способы умножения на двузнач­ные числа, разложимые на однозначные множители, т. е. все двузначные числа, входящие в таблицу умножения.

Подробнее...

Множитель 11 заслуживает того, чтобы сказать о нем несколько слов особо. Все вычисления с ним произво­дятся на счетах гораздо быстрее и удобнее, чем с любым другим двузначным множителем.

Рассматривая 11 как сумму (10 + 1), мы видим, что умножить на 11 — это значит умножить на 10 и к про­изведению прибавить множимое еще один раз. Посколь­ку умножение на 10 производится путем передвижки чис­ла одним разрядом выше три откладывании его на сче­тах, то умножение на 11 равносильно двукрат­ному откладыванию на счетах одного и того же числа, причем один раз оно ставится разрядом выше.

Подробнее...

Возьмем два близких друг к другу числа, из которых одно простое, а другое разлагается на множители, например, 19 и 20. Умножение на 20 равносильно умножениюна 10 и на 2, что гораздо проще, чем умножение на 19. Точно так же, беря, например, числа 23 и 25, 47 и 50, 58 и 60, 62 и 60, убеждаемся, что второе число в каждой паре является более удобным множителем, чем первое, так как каждое из них, будучи «круглым» или разложенным на однозначные множители, позволяет производить умножение простейшими приемами.

Подробнее...
Template Settings
Select color sample for all parameters
Red Green Blue Gray
Background Color
Text Color
Google Font
Body Font-size
Body Font-family
Scroll to top